Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Generalized clocks in timeless canonical formalism

Articolo
Data di Pubblicazione:
2011
Citazione:
Generalized clocks in timeless canonical formalism / E. Prati. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 306:1(2011), pp. 012013.1-012013.8. (Intervento presentato al 5. convegno DICE10, Space-Time-Matter, current issues in quantum mechanics and beyond tenutosi a Castiglioncello nel 2010) [10.1088/1742-6596/306/1/012013].
Abstract:
Hamiltonian dynamics is recast in a timeless formalism in which parameter time a is derived from the generalized coordinates, the Hamiltonian invariance on trajectories, and the Maupertuis principle. In order to define a time variable T in macroscopic systems, the cyclicity in the phase space replaces the self consistent assumption of time periodicity generally adopted for real clocks. Generalized clocks are defined in physical systems of sufficient complexity. Under suitable assumptions, physical systems can be separated in a subsystem to be dynamically described, and another cyclic subsystem which has the role of generalized clock. The latter provides a discrete approximation of the parameter time, called metric time. The stability prescription of generalized clocks guarantees that dynamics is expressed by the same equations of motion parametrized by the parameter time, in terms of metric time at the desired approximation. The timeless Hamiltonian framework, together with the definition of generalized clock, provide a ground to account the fundamental timelessness of nature, and the experimental evidence of time evolution in macroscopic systems experienced by the observers.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
E. Prati
Autori di Ateneo:
PRATI ENRICO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/991812
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/991812/2264559/2011IOP-Prati-Generalized.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0