Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Zero-cycle groups on algebraic varieties

Articolo
Data di Pubblicazione:
2022
Citazione:
Zero-cycle groups on algebraic varieties / F. Binda, A. Krishna. - In: JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES. - ISSN 2270-518X. - 9(2022), pp. 281-325. [10.5802/jep.183]
Abstract:
We compare various groups of -cycles on quasi-projective varieties over a field. As applications, we show that for certain singular projective varieties, the Levine-Weibel Chow group of -cycles coincides with the corresponding Friedlander-Voevodsky motivic cohomology. We also show that over an algebraically closed field of positive characteristic, the Chow group of -cycles with modulus on a smooth projective variety with respect to a reduced divisor coincides with the Suslin homology of the complement of the divisor. We prove several generalizations of the finiteness theorem of Saito and Sato for the Chow group of -cycles over -adic fields. We also use these results to deduce a torsion theorem for Suslin homology which extends a result of Bloch to open varieties.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
F. Binda, A. Krishna
Autori di Ateneo:
BINDA FEDERICO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/899355
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/899355/1958875/Motivic-coh-nc-FINAL-JEP.pdf
https://air.unimi.it/retrieve/handle/2434/899355/1958876/JEP_2022__9__281_0.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/03 - Geometria
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0