Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On an elastic model arising from volcanology : An analysis of the direct and inverse problem

Articolo
Data di Pubblicazione:
2018
Citazione:
On an elastic model arising from volcanology : An analysis of the direct and inverse problem / A. Aspri, E. Beretta, E. Rosset. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 265:12(2018), pp. 6400-6423. [10.1016/j.jde.2018.07.031]
Abstract:
In this paper we investigate a mathematical model arising from volcanology describing surface deformation effects generated by a magma chamber embedded into Earth's interior and exerting on it a uniform hydrostatic pressure. The modeling assumptions translate mathematically into a Neumann boundary value problem for the classical Lamé system in a half-space with an embedded pressurized cavity. We establish well-posedness of the problem in suitable weighted Sobolev spaces and analyse the inverse problem of determining the pressurized cavity from partial measurements of the displacement field proving uniqueness and stability estimates.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Half-space; Inverse problem; Lamé system; Neumann problem; Stability estimates; Weighted Sobolev spaces
Elenco autori:
A. Aspri, E. Beretta, E. Rosset
Autori di Ateneo:
ASPRI ANDREA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/898372
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/898372/1955927/3.Aspri_JDE18.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0