Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Asymptotic expansion for harmonic functions in the half-space with a pressurized cavity

Articolo
Data di Pubblicazione:
2016
Citazione:
Asymptotic expansion for harmonic functions in the half-space with a pressurized cavity / A. Aspri, E. Beretta, C. Mascia. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 39:10(2016), pp. 2415-2430. [10.1002/mma.3648]
Abstract:
In this paper, we address a simplified version of a problem arising from volcanology. Specifically, as a reduced form of the boundary value problem for the Lamé system, we consider a Neumann problem for harmonic functions in the half-space with a cavity C. Zero normal derivative is assumed at the boundary of the half-space; differently, at ∂C, the normal derivative of the function is required to be given by an external datum g, corresponding to a pressure term exerted on the medium at ∂C. Under the assumption that the (pressurized) cavity is small with respect to the distance from the boundary of the half-space, we establish an asymptotic formula for the solution of the problem. Main ingredients are integral equation formulations of the harmonic solution of the Neumann problem and a spectral analysis of the integral operators involved in the problem. In the special case of a datum g, which describes a constant pressure at ∂C, we recover a simplified representation based on a polarization tensor.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
asymptotic expansions; harmonic functions in the half-space; single and double layer potentials
Elenco autori:
A. Aspri, E. Beretta, C. Mascia
Autori di Ateneo:
ASPRI ANDREA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/898390
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0