Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Sampling in spaces of entire functions of exponential type in Cn+1

Articolo
Data di Pubblicazione:
2022
Citazione:
Sampling in spaces of entire functions of exponential type in Cn+1 / A. Monguzzi, M.M. Peloso, M. Salvatori. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 282:6(2022 Mar 15), pp. 109377.1-109377.33. [10.1016/j.jfa.2021.109377]
Abstract:
In this paper we consider the question of sampling for spaces of entire functions of exponential type in several variables. The novelty resides in the growth condition we impose on the entire functions, that is, that their restriction to a hypersurface is square integrable with respect to a natural measure. The hypersurface we consider is the boundary bU of the Siegel upper half-space U and it is fundamental that bU can be identified with the Heisenberg group Hn. We consider entire functions in Cn+1 of exponential type with respect to the hypersurface bU whose restriction to bU are square integrable with respect to the Haar measure on Hn. For these functions we prove a version of the Whittaker–Kotelnikov–Shannon Theorem. Instrumental in our work are spaces of entire functions in Cn+1 of exponential type with respect to the hypersurface bU whose restrictions to bU belong to some homogeneous Sobolev space on Hn. For these spaces, using the group Fourier transform on Hn, we prove a Paley–Wiener type theorem and a Plancherel–Pólya type inequality.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Entire functions of exponential type; Heisenberg group; Paley–Wiener theorem; Sampling; Siegel upper half-space
Elenco autori:
A. Monguzzi, M.M. Peloso, M. Salvatori
Autori di Ateneo:
PELOSO MARCO MARIA ( autore )
SALVATORI MAURA ELISABETTA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/896444
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/896444/2398724/2105.08458-3.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/05 - Analisi Matematica

Settore MATH-03/A - Analisi matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0