Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Attività

Geometric, algebraic and analytic methods in arithmetic

Progetto
RESEARCH TOPIC The project aims at interconnecting different methods in number theory, namely geometric, algebraic and analytic techniques, in order to attach central problems in diophantine geometry, Unlikely Intersections over algebraic groups, Iwasawa theory, the arithmetic of elliptic curves, motives and motivic Galois groups, p-adic Hodge theory and L-functions. Our unit will organize joint seminars together with the units of Genova and Padova. We also plan to organize conferences and summer schools within the ALGANT international Master Program. Part of the funds will be employed by the members of the unit in order to strengthen their collaborations, and took part to conferences in order to disseminate the results obtained. ABSTRACT Number theory makes use of geometric, algebraic and analytic methods as tools to attack arithmetic problems. This project connects six research teams in Italy, where all these different approaches to number theory are explored. Connection with complex algebraic geometry, as well as abstract algebra, are also considered. The main research themes are represented by Diophantine geometry, Unlikely Intersections over algebraic groups, Iwasawa theory, the arithmetic of elliptic curves (e.g. Birch and Swinnerton-Dyer conjecture), motives and motivic Galois groups, p-adic Hodge theory, L-functions, in particular the study of the Selberg class and computation of moments on average over certain families; additive problems of Goldbach type. The theory of p-adic L-functions (e.g. in Hida theory, or in the Birch-Swinnerton-Dyer conjecture). Galois representations associated to abelian varieties and rational points on modular curves. Drinfeld modular curves. Relations with algebraic geometry arise e.g. via the theory of deformations and links with complex analytic geometry derive from Nevanlinna theory and the conjectural relation between the distribution of integral points and of entire curves on algebraic varieties.
  • Dati Generali
  • Aree Di Ricerca
  • Pubblicazioni

Dati Generali

Partecipanti

SEVESO MARCO ADAMO   Responsabile scientifico  

Dipartimenti coinvolti

Dipartimento di Matematica Federigo Enriques   Principale  

Tipo

PRIN2017 - PRIN bando 2017

Finanziatore

MINISTERO DELL'ISTRUZIONE E DEL MERITO
Organizzazione Esterna Ente Finanziatore

Capofila

UNIVERSITA' DEGLI STUDI DI UDINE

Periodo di attività

Agosto 19, 2019 - Agosto 18, 2022

Durata progetto

36 mesi

Aree Di Ricerca

Settori


Settore MAT/02 - Algebra

Pubblicazioni

Pubblicazioni (7)

Generalized Pohst inequality and small regulators 
MATHEMATICS OF COMPUTATION
AMERICAN MATHEMATICAL SOCIETY
2025
Articolo
Partially Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Motives 
INDAGATIONES MATHEMATICAE
ELSEVIER B.V.
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
A Hochschild-Kostant-Rosenberg theorem and residue sequences for logarithmic Hochschild homology 
ADVANCES IN MATHEMATICS
ELSEVIER
2023
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Derived log Albanese sheaves 
ADVANCES IN MATHEMATICS
ELSEVIER
2023
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Logarithmic Prismatic Cohomology via Logarithmic THH 
INTERNATIONAL MATHEMATICS RESEARCH NOTICES
2023
Articolo
Partially Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Motives and homotopy theory in logarithmic geometry 
COMPTES RENDUS MATHÉMATIQUE
FRENCH ACADEMY OF SCIENCES
2022
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Connectivity and purity for logarithmic motives 
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU
CAMBRIDGE UNIVERSITY PRESS
2021
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0