A Hochschild-Kostant-Rosenberg theorem and residue sequences for logarithmic Hochschild homology
Articolo
Data di Pubblicazione:
2023
Citazione:
A Hochschild-Kostant-Rosenberg theorem and residue sequences for logarithmic Hochschild homology / F. Binda, T. Lundemo, D. Park, P.A. Oestvaer. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 435:(2023 Dec 15), pp. 109354.1-109354.66. [10.1016/j.aim.2023.109354]
Abstract:
This paper incorporates the theory of Hochschild homology into our program on log motives. We discuss a geometric definition of logarithmic Hochschild homology of animated pre-log rings and construct an André-Quillen type spectral sequence. The latter degenerates for derived log smooth maps between discrete pre-log rings. We employ this to show a logarithmic version of the Hochschild-Kostant-Rosenberg theorem and that logarithmic Hochschild homology is representable in the category of log motives. Among the applications, we deduce a generalized residue sequence involving blow-ups of log schemes.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Dividing covers; Logarithmic Hochschild homology;
Elenco autori:
F. Binda, T. Lundemo, D. Park, P.A. Oestvaer
Link alla scheda completa:
Link al Full Text: