Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

An open-source machine learning framework for global analyses of parton distributions

Articolo
Data di Pubblicazione:
2021
Citazione:
An open-source machine learning framework for global analyses of parton distributions / R.D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, J.I. Latorre, E.R. Nocera, R.L. Pearson, J. Rojo, R. Stegeman, C. Schwan, M. Ubiali, C. Voisey, M. Wilson. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 81:10(2021), pp. 958.-958.1. [10.1140/epjc/s10052-021-09747-9]
Abstract:
We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
R.D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, J.I. Latorre, E.R. Nocera, R.L. Pearson, J. Rojo, R. Stegeman, C. Schwan, M. Ubiali, C. Voisey, M. Wilson
Autori di Ateneo:
CARRAZZA STEFANO ( autore )
FORTE STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/879989
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/879989/1903346/2109.02671.pdf
https://air.unimi.it/retrieve/handle/2434/879989/1914362/Ball2021_Article_AnOpen-sourceMachineLearningFr.pdf
Progetto:
Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici

Settore FIS/04 - Fisica Nucleare e Subnucleare
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0