Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Gluing approximable triangulated categories

Articolo
Data di Pubblicazione:
2023
Citazione:
Gluing approximable triangulated categories / J. Burke, A. Neeman, B. Pauwels. - In: FORUM OF MATHEMATICS. SIGMA. - ISSN 2050-5094. - 11:(2023 Dec 05), pp. e110.1-e110.18. [10.1017/fms.2023.97]
Abstract:
Given a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful. Recently, a modified version of this was introduced in triangulated categories other than the derived category of a ring. A triangulated category is approximable if this modified procedure is possible. Not surprisingly this has proved a powerful tool. For example: the fact that is approximable when X is a quasi compact, separated scheme led to major improvements on old theorems due to Bondal, Van den Bergh and Rouquier. In this article, we prove that, under weak hypotheses, the recollement of two approximable triangulated categories is approximable. In particular, this shows many of the triangulated categories that arise in noncommutative algebraic geometry are approximable. Furthermore, the lemmas and techniques developed in this article form a powerful toolbox which, in conjunction with the groundwork laid in [16], has interesting applications in existing and forthcoming work by the authors.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
J. Burke, A. Neeman, B. Pauwels
Autori di Ateneo:
NEEMAN AMNON ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1189824
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1189824/3162837/burke-neeman-pauwels23.pdf
Progetto:
Triangulated categories and their applications, chiefly to algebraic geometry (TriCatApp)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore CEAR-04/A - Geomatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0