Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Attività

Triangulated categories and their applications, chiefly to algebraic geometry (TriCatApp)

Progetto
There are two components to this project. (1) Develop and extend the striking new theory, created by the PI in the last few years, which studies triangulated categories via metrics and approximations. (2) Build on very recent work to better understand which functors are Fourier-Mukai and which aren't. In the case of (1), the novel idea of appropriately using metrics has already allowed the PI to prove several difficult conjectures, the most recent just a few weeks ago. The potential of the new theory is immense, and this project aims to extend the scope of the methods and apply them widely. The project also aims to work out the implications of a surprising theorem proved by the methods, which shows that the derived category of perfect complexes and the bounded derived category of coherent sheaves are constructible from each other, as triangulated categories, by an explicit recipe. This theorem flies in the face of accepted wisdom, which viewed the two categories as totally different. Thus a whole body of work, analysing the many differences between these derived categories, needs to be carefully revisited and reconsidered in the light of the new construction. The Fourier-Mukai transforms of (2) have a long and venerable history, with beautiful work by many authors. But there were novel techniques introduced in a couple of recent articles, and the project plans to deploy them more widely. The aim is for a breakthrough in the area, leading to a better understanding of which exact functors are Fourier-Mukai and which aren't.
  • Dati Generali
  • Aree Di Ricerca
  • Pubblicazioni

Dati Generali

Partecipanti

NEEMAN AMNON   Responsabile scientifico  

Dipartimenti coinvolti

Dipartimento di Matematica Federigo Enriques   Principale  

Tipo

Horizon Europe - European Research Council (ERC)

Finanziatore

EUROPEAN COMMISSION
Organizzazione Esterna Ente Finanziatore

Periodo di attività

Settembre 1, 2023 - Agosto 31, 2027

Durata progetto

48 mesi

Aree Di Ricerca

Settori


Settore MAT/06 - Probabilita' e Statistica Matematica

Pubblicazioni

Pubblicazioni (9)

Bounded t-structures on the category of perfect complexes 
ACTA MATHEMATICA
SPRINGER
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
An Improvement on the Base-Change Theorem and the Functor f! 
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY
SPRINGER
2023
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Gluing approximable triangulated categories 
FORUM OF MATHEMATICS. SIGMA
CAMBRIDGE UNIVERSITY PRESS
2023
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
A counterexample to vanishing conjectures for negative K-theory 
INVENTIONES MATHEMATICAE
2021
Articolo
Partially Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
New progress on Grothendieck duality, explained to those familiar with category theory and with algebraic geometry 
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
CAMBRIDGE UNIVERSITY PRESS
2021
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Strong generators in Dperf(X) and Dbcoh(X) 
ANNALS OF MATHEMATICS
2021
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
The t-Structures Generated by Objects 
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
AMERICAN MATHEMATICAL SOCIETY
2021
Articolo
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Finite approximations as a tool for studying triangulated categories 
EUROPEAN MATHEMATICAL SOCIETY
2022
Contributo in Atti di convegno
Open Access
Approximable triangulated categories 
CONTEMPORARY MATHEMATICS
AMERICAN MATHEMATICAL SOCIETY
2021
Contributo in Atti di convegno
Partially Open Access
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0