Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Evaluating explainability techniques on discrete-time graph neural networks

Articolo
Data di Pubblicazione:
2025
Citazione:
Evaluating explainability techniques on discrete-time graph neural networks / M. Dileo, M. Zignani, S. Gaito. - In: TRANSACTIONS ON MACHINE LEARNING RESEARCH. - ISSN 2835-8856. - 2025:(2025), pp. 1-15.
Abstract:
Discrete-time temporal Graph Neural Networks (GNNs) are powerful tools for modeling evolving graph-structured data and are widely used in decision-making processes across domains such as social network analysis, financial systems, and collaboration networks. Explaining the predictions of these models is an important research area due to the critical role their decisions play in building trust in social or financial systems. However, the explainability of Temporal Graph Neural Networks remains a challenging and relatively unexplored field. Hence, in this work, we propose a novel framework to evaluate explainability techniques tailored for discrete-time temporal GNNs. Our framework introduces new training and evaluation settings that capture the evolving nature of temporal data, defines metrics to assess the temporal aspects of explanations, and establishes baselines and models specific to discrete-time temporal networks. Through extensive experiments, we outline the best explainability techniques for discrete-time GNNs in terms of fidelity, efficiency, and human-readability trade-offs. By addressing the unique challenges of temporal graph data, our framework sets the stage for future advancements in explaining discrete-time GNNs.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M. Dileo, M. Zignani, S. Gaito
Autori di Ateneo:
DILEO MANUEL ( autore )
GAITO SABRINA TIZIANA ( autore )
ZIGNANI MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1172359
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1172359/3096264/2025_XaiDTGNN_TMLR-5.pdf
Progetto:
AWESOME: Analysis framework for WEb3 SOcial MEdia
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0