Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Evaluating the Quality of CycleGAN Generated ECG Data for Myocardial Infarction Classification

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Evaluating the Quality of CycleGAN Generated ECG Data for Myocardial Infarction Classification / S. Battiston, R. Sassi, M.W. Rivolta - In: Computing in Cardiology[s.l] : IEEE, 2024. - pp. 1-4 (( Intervento presentato al 51. convegno International Computing in Cardiology conference tenutosi a Karlsruhe nel 2024 [10.22489/cinc.2024.457].
Abstract:
The demand for extensive annotated datasets in ECG interpretation has led to the development of synthetic datasets using generative neural networks. Our study is aimed at assessing the quality of synthetic ECGs generated via a CycleGAN network by means of visual inspection (confidence bands and UMAP 2D plots), GAN-specific evaluation methods (GAN-train and GAN-test scoring), and statistical tests comparing ST segment amplitudes (modified Hotelling T-squared test). To this goal, we utilized a selection of 12-lead ECGs from the PTBXL dataset (available on Physionet) falling under three conditions: normal sinus rhythm, anteroseptal myocardial infarction and inferior myocardial infarction. Through the CycleGAN network we generated synthetic ECGs and compared them with the original ones. The qualitative analysis, by means of plots, showed that there was a difference in the distributions of real and synthetic data. The GANtrain/test method provided results confirming this conclusion. Lastly, the ST-segments analysis showed distributions which were dissimilar among all the conditions. In conclusion, our work demonstrated that generative networks developed in the context of image processing cannot be simply adapted to augment ECG datasets, and that proper care should be enforced to verify the quality of the generated signals, before utilising such data in applications
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
S. Battiston, R. Sassi, M.W. Rivolta
Autori di Ateneo:
BATTISTON SARA ( autore )
RIVOLTA MASSIMO WALTER ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1145696
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1145696/2673429/C44_CinC2024_CycleGAN_Quality.pdf
Titolo del libro:
Computing in Cardiology
Progetto:
Adaptive AI methods for Digital Health (AIDH)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore IBIO-01/A - Bioingegneria

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0