Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Addressing the non-perturbative regime of the quantum anharmonic oscillator by physics-informed neural networks

Articolo
Data di Pubblicazione:
2024
Citazione:
Addressing the non-perturbative regime of the quantum anharmonic oscillator by physics-informed neural networks / L. Brevi, A. Mandarino, E. Prati. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 26:10(2024 Oct), pp. 103015.1-103015.17. [10.1088/1367-2630/ad8302]
Abstract:
The use of deep learning in physical sciences has recently boosted the ability of researchers to tackle physical systems where little or no analytical insight is available. Recently, the Physics−Informed Neural Networks (PINNs) have been introduced as one of the most promising tools to solve systems of differential equations guided by some physically grounded constraints. In the quantum realm, such an approach paves the way to a novel approach to solve the Schrödinger equation for non-integrable systems. By following an unsupervised learning approach, we apply the PINNs to the anharmonic oscillator in which an interaction term proportional to the fourth power of the position coordinate is present. We compute the eigenenergies and the corresponding eigenfunctions while varying the weight of the quartic interaction. We bridge our solutions to the regime where both the perturbative and the strong coupling theory work, including the pure quartic oscillator. We investigate systems with real and imaginary frequency, laying the foundation for novel numerical methods to tackle problems emerging in quantum field theory.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
deep learning for nonintegrable systems; physics-informed neural networ; quantum anharmonic oscillator
Elenco autori:
L. Brevi, A. Mandarino, E. Prati
Autori di Ateneo:
BREVI LORENZO ( autore )
PRATI ENRICO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1138435
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1138435/2731139/Brevi_2024_New_J._Phys._26_103015.pdf
Progetto:
Quantum informed neural network for extreme physics applications QXTREME
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0