Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A Survey on Machine Learning Techniques for Head-Related Transfer Function Individualization

Articolo
Data di Pubblicazione:
2025
Citazione:
A Survey on Machine Learning Techniques for Head-Related Transfer Function Individualization / D. Fantini, M. Geronazzo, F. Avanzini, S. Ntalampiras. - In: IEEE OPEN JOURNAL OF SIGNAL PROCESSING. - ISSN 2644-1322. - 6:(2025), pp. 30-56. [10.1109/ojsp.2025.3528330]
Abstract:
Machine learning (ML) has become pervasive in various research fields, including binaural synthesis personalization, which is crucial for sound in immersive virtual environments. Researchers have mainly addressed this topic by estimating the individual head-related transfer function (HRTF). HRTFs are utilized to render audio signals at specific spatial positions, thereby simulating real-world sound wave interactions with the human body. As such, an HRTF that is compliant with individual characteristics enhances the realism of the binaural simulation. This survey systematically examines the ML-based HRTF individualization works proposed in the literature. The analyzed works are organized according to the processing steps involved in the ML workflow, including the employed dataset, input and output types, data preprocessing operations, ML models, and model evaluation. In addition to categorizing the existing literature works, this survey discusses their achievements, identifies their limitations, and outlines aspects requiring further investigation at the crossroads of research communities in acoustics, audio signal processing, and machine learning.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
HRTF individualization; machine learning; spatial audio; binaural synthesis
Elenco autori:
D. Fantini, M. Geronazzo, F. Avanzini, S. Ntalampiras
Autori di Ateneo:
AVANZINI FEDERICO ( autore )
FANTINI DAVIDE ( autore )
NTALAMPIRAS STAVROS ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1136255
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1136255/2713849/A_Survey_on_Machine_Learning_Techniques_for_Head-Related_Transfer_Function_Individualization.pdf
Progetto:
Transforming auditory-based social interaction and communication in AR/VR (SONICOM)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0