Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Attività

Transforming auditory-based social interaction and communication in AR/VR (SONICOM)

Progetto
Immersive audio is our everyday experience of being able to hear and interact with sounds around us. Simulating spatially located sounds in virtual or augmented reality (VR/AR) must be done in a unique way for each individual and currently requires expensive and time-consuming individual measurements, making it commercially unfeasible. Furthermore, the impact of immersive audio beyond perceptual metrics such as presence and localisation is still an unexplored area of research, specifically when related with social interaction, entering the behavioural and cognitive realms. SONICOM will revolutionise the way we interact socially within AR/VR environments and applications by leveraging methods from Artificial Intelligence (AI) to design a new generation of immersive audio technologies and techniques, specifically looking at personalisation and customisation of the audio rendering. Using a data-driven approach, it will explore, map and model how the physical characteristics of spatialised auditory stimuli can influence observable behavioural, physiological, kinematic, and psychophysical reactions of listeners within social interaction scenarios. The developed techniques and models will be evaluated in an ecologically valid manner, exploiting AR/ VR simulations as well as real-life scenarios, and developing appropriate hardware and software proofs-of-concept. Finally, in order to reinforce the idea of reproducible research and promoting future development and innovation in the area of auditory-based social interaction, the SONICOM Ecosystem will be created, which will include auditory data closely linked with model implementations and immersive audio rendering components.
  • Dati Generali
  • Aree Di Ricerca
  • Pubblicazioni

Dati Generali

Partecipanti

AVANZINI FEDERICO   Responsabile scientifico  

Dipartimenti coinvolti

Dipartimento di Informatica Giovanni Degli Antoni   Principale  

Tipo

H20_RIA - Horizon 2020_Research & Innovation Action/Innovation Action

Finanziatore

EUROPEAN COMMISSION
Organizzazione Esterna Ente Finanziatore

Capofila

THE IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE - IMPERIAL COLLEGE LONDON

Periodo di attività

Gennaio 1, 2021 - Giugno 30, 2026

Durata progetto

66 mesi

Aree Di Ricerca

Settori


Settore INF/01 - Informatica

Pubblicazioni

Pubblicazioni (7)

A Survey on Machine Learning Techniques for Head-Related Transfer Function Individualization 
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
IEEE OPEN JOURNAL
2025
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Co-immersion in Audio Augmented Virtuality: the Case Study of a Static and Approximated Late Reverberation Algorithm 
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)
2023
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
A Highly Parametrized Scattering Delay Network Implementation for Interactive Room Auralization 
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS
UNIVERSITY OF SURREY
2024
Contributo in Atti di convegno
Open Access
PAN-AR: A Multimodal Dataset of Higher-Order Ambisonics Room Impulse Responses, Ambient Noise and Spherical Pictures 
2024
Contributo in Atti di convegno
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Toward a Novel Set of Pinna Anthropometric Features for Individualizing Head-Related Transfer Functions 
2024
Contributo in Atti di convegno
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Automatic Parameters Tuning of Late Reverberation Algorithms for Audio Augmented Reality 
2022
Contributo in Atti di convegno
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
HRTF Individualization Based on Anthropometric Measurements Extracted from 3D Head Meshes 
IEEE
2021
Contributo in Atti di convegno
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.5.0.1