Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Automated detection of bone lesions using CT and MRI: a systematic review

Articolo
Data di Pubblicazione:
2024
Citazione:
Automated detection of bone lesions using CT and MRI: a systematic review / F. Erdem, S. Gitto, S. Fusco, M.V. Bausano, F. Serpi, D. Albano, C. Messina, L.M. Sconfienza. - In: LA RADIOLOGIA MEDICA. - ISSN 1826-6983. - (2024), pp. 1-8. [Epub ahead of print] [10.1007/s11547-024-01913-9]
Abstract:
Purpose: The aim of this study was to systematically review the use of automated detection systems for identifying bone lesions based on CT and MRI, focusing on advancements in artificial intelligence (AI) applications. Materials and methods: A literature search was conducted on PubMed and MEDLINE. Data were extracted and grouped into three main categories, namely baseline study characteristics, model validation strategies, and the type of AI algorithms. Results: A total of 10 studies were selected and analyzed, including 2,768 patients overall with a median of 187 per study. These studies utilized various AI algorithms, predominantly deep learning models (6 studies) such as Convolutional Neural Networks. Among machine learning validation strategies, K-fold cross-validation was the mostly used (5 studies). Clinical validation was performed using data from the same institution (internal testing) in 8 studies and from both the same and different (external testing) institutions in 1 study, respectively. Conclusion: AI, particularly deep learning, holds significant promise in enhancing diagnostic accuracy and efficiency. However, the review highlights several limitations, such as the lack of standardized validation methods and the limited use of external datasets for testing. Future research should address these gaps to ensure the reliability and applicability of AI-based detection systems in clinical settings.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Artificial intelligence; Automated detection; Bone tumor; Deep learning
Elenco autori:
F. Erdem, S. Gitto, S. Fusco, M.V. Bausano, F. Serpi, D. Albano, C. Messina, L.M. Sconfienza
Autori di Ateneo:
ALBANO DOMENICO ( autore )
FUSCO STEFANO ( autore )
GITTO SALVATORE ( autore )
MESSINA CARMELO ( autore )
SCONFIENZA LUCA MARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1116989
Progetto:
RADIOmics-based machine-learning classification of BOne and Soft Tissue Tumors (RADIO-BOSTT) (3° anno)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MEDS-22/A - Diagnostica per immagini e radioterapia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0