Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the Minimax Regret for Online Learning with Feedback Graphs

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
On the Minimax Regret for Online Learning with Feedback Graphs / K. Eldowa, E. Esposito, T. Cesari, N. Cesa Bianchi (ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS). - In: Advances in Neural Information Processing Systems. 36 / [a cura di] A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine. - [s.l] : Curran Associates, 2023. - pp. 46122-46133 (( Intervento presentato al 37. convegno Neural Information Processing Systems tenutosi a 2023 nel 2023.
Abstract:
In this work, we improve on the upper and lower bounds for the regret of online learning with strongly observable undirected feedback graphs. The best known upper bound for this problem is O√αT ln K, where K is the number of actions, α is the independence number of the graph, and T is the time horizon. The √ln K factor is known to be necessary when α = 1 (the experts case). On the other hand, when α = K (the bandits case), the minimax rate is known to be Θ√KT , and a lower bound Ω√αT  is known to hold for any α. Our improved upper bound OpαT (1 + ln(K/α)) holds for any α and matches the lower bounds for bandits and experts, while interpolating intermediate cases. To prove this result, we use FTRL with q-Tsallis entropy for a carefully chosen value of q ∈ [1/2, 1) that varies with α. The analysis of this algorithm requires a new bound on the variance term in the regret. We also show how to extend our techniques to time- varying graphs, without requiring prior knowledge of their independence numbers. Our upper bound is complemented by an improved ΩpαT (ln K)/(ln α) lower bound for all α > 1, whose analysis relies on a novel reduction to multitask learning. This shows that a logarithmic factor is necessary as soon as α < K.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
K. Eldowa, E. Esposito, T. Cesari, N. Cesa Bianchi
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
ELDOWA KHALED MAZEN MAHMOUD ELSAYED ( autore )
ESPOSITO EMMANUEL ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1034112
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1034112/2372462/NeurIPS-2023-on-the-minimax-regret-for-online-learning-with-feedback-graphs-Paper-Conference.pdf
Titolo del libro:
Advances in Neural Information Processing Systems. 36
Progetto:
Learning in Markets and Society
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0