Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Attività

Virtual Element Methods: Analysis and Applications

Progetto
The Virtual Element Method (VEM) is a novel technology for the discretization of Partial Differential Equations, that shares the same variational background as the Finite Element Method. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrices, the VEM acquires very interesting properties. The VEM easily allows for polygonal/polyhedral meshes also with non-convex elements; it allows for discrete spaces of arbitrary order k continuity on unstructured meshes; it allows to exactly enforce constraints on the discrete solution. The main aim of the project is to address the recent theoretical challenges posed by the extension of VEM to new and more complex problems and to assess whether this promising technology can achieve a breakthrough in various applications. On one side, the theoretical and computational foundations of VEM will be made stronger by investigating, for instance, robustness to geometry parameters and efficiency in terms of degrees of freedom. On the other side, we will focus on different problems of practical interest such as the development of VEM for Maxwell equations, polyharmonic problems, complex flows, elasto-plastic deformation problems and others.
  • Dati Generali
  • Aree Di Ricerca
  • Pubblicazioni

Dati Generali

Partecipanti

LOVADINA CARLO   Responsabile scientifico  

Dipartimenti coinvolti

Dipartimento di Matematica Federigo Enriques   Principale  

Tipo

PRIN2017 - PRIN bando 2017

Finanziatore

MINISTERO DELL'ISTRUZIONE E DEL MERITO
Organizzazione Esterna Ente Finanziatore

Capofila

UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA

Periodo di attività

Agosto 19, 2019 - Agosto 18, 2022

Durata progetto

36 mesi

Aree Di Ricerca

Settori


Settore MAT/08 - Analisi Numerica

Pubblicazioni

Pubblicazioni (6)

Identification of Cavities and Inclusions in Linear Elasticity with a Phase-Field Approach 
APPLIED MATHEMATICS AND OPTIMIZATION
SPRINGER
2022
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Virtual Element Methods for three-dimensional Hellinger-Reissner elastostatic problems 
COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS
ITALIAN SOCIETY FOR APPLIED AND INDUSTRIAL MATHEMATICS (SIMAI)
2022
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
Hybridization of the virtual element method for linear elasticity problems 
MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
WORLD SCIENTIFIC
2021
Articolo
Partially Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
A three-dimensional Hellinger–Reissner virtual element method for linear elasticity problems 
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
ELSEVIER
2020
Articolo
Reserved Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
The Conforming Virtual Element Method for Polyharmonic and Elastodynamics Problems: A Review 
SEMA SIMAI SPRINGER SERIES
SPRINGER
2022
Capitolo di libro
Partially Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
On Arbitrarily Regular Conforming Virtual Element Methods for Elliptic Partial Differential Equations 
LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING
SPRINGER
2023
Contributo in Atti di convegno
Partially Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.5.2.0