Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Towards Machine-Learning-Based 5G and Beyond Intelligent Networks: The MARSAL Project Vision has been updated

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
Towards Machine-Learning-Based 5G and Beyond Intelligent Networks: The MARSAL Project Vision has been updated / J.S. Vardakas, K. Ramantas, E. Datsika, M. Payaro, S. Pollin, E. Vinogradov, M. Varvarigos, P. Kokkinos, R. Gonzalez-Sanchez, J.J. Vegas Olmos, I. Chochliouros, P. Chanclou, P. Samarati, A. Flizikowski, M. Arifur Rahman, C. Verikoukis - In: MeditCom[s.l] : Institute of Electrical and Electronics Engineers (IEEE), 2021. - ISBN 978-1-6654-4505-4. - pp. 488-493 (( convegno International Mediterranean Conference on Communications and Networking: September, 7th through 10th tenutosi a Athens nel 2021 [10.1109/MeditCom49071.2021.9647671].
Abstract:
5G mobile networks will be soon available to handle all types of applications and to provide service to massive numbers of users. In this complex and dynamic network ecosystem, end-to-end performance analysis and optimization will be key features to effectively manage the diverse requirements imposed by multiple vertical industries over the same shared infrastructure. To enable such a vision, the MARSAL project targets the development and evaluation of a complete framework for the management and orchestration of network resources in 5G and beyond, by utilizing a converged optical-wireless network infrastructure in the access and fronthaul/midhaul segments. At the network design domain, MARSAL targets the development of novel cell-free based solutions by exploiting the application of the distributed cell-free concept and of the serial fronthaul approach, while contributing innovative functionalities to the O-RAN project. In parallel, in the fronthaul/midhaul segments MARSAL aims to radically increase the flexibility of optical access architectures via different levels of fixed-mobile convergence. At the network and service management domain, the design philosophy of MARSAL is to exploit novel ML-based algorithms of both edge and midhaul DCs, by incorporating the Virtual Elastic DataCenters/Infrastructures paradigm. Finally, at the network security domain, MARSAL aims to introduce mechanisms that provide privacy and security to application workload and data, targeting to allow applications and users to maintain control over their data, while AI and and Blockchain technologies will be developed in order to guarantee a secured multi-tenant slicing environment.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
J.S. Vardakas, K. Ramantas, E. Datsika, M. Payaro, S. Pollin, E. Vinogradov, M. Varvarigos, P. Kokkinos, R. Gonzalez-Sanchez, J.J. Vegas Olmos, I. Chochliouros, P. Chanclou, P. Samarati, A. Flizikowski, M. Arifur Rahman, C. Verikoukis
Autori di Ateneo:
SAMARATI PIERANGELA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/863438
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/863438/1857404/a115-ramantas.pdf
Titolo del libro:
MeditCom
Progetto:
Machine Learning-based, Networking and Computing Infrastructure Resource Management of 5G and beyond Intelligent Networks (MARSAL)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0