Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Automatic ECG-based Discrimination of 20 Atrial Flutter Mechanisms: Influence of Atrial and Torso Geometries

Contributo in Atti di convegno
Data di Pubblicazione:
2020
Citazione:
Automatic ECG-based Discrimination of 20 Atrial Flutter Mechanisms: Influence of Atrial and Torso Geometries / G. Luongo, S. Schuler, M.W. Rivolta, O. Dossel, R. Sassi, A. Loewe - In: Computing in Cardiology[s.l] : IEEE Computer Society, 2020. - ISBN 9781728173825. - pp. 1-4 (( Intervento presentato al 47. convegno CinC tenutosi a Rimini nel 2020 [10.22489/CinC.2020.066].
Abstract:
Atrial flutter (AFl) is a common heart rhythm disorder driven by different self-sustaining electrophysiological atrial mechanisms. In the present work, we sought to discriminate which mechanism is sustaining the arrhythmia in an individual patient using non-invasive 12-lead electrocardiogram (ECG) signals. Specifically, we analyse the influence of atrial and torso geometries for the success of such discrimination. 2,512 ECG were simulated and 151 features were extracted from the signals. Three classification scenarios were investigated: random set classification; leave-one-atrium-out (LOAO); and leave-one-torso-out (LOTO). A radial basis neural network classifier achieved test accuracies of 89.84%, 88.98%, and 59.82% for the random set classification, LOTO, and LOAO, respectively. The most discriminative single feature was the F-wave duration (74% test accuracy). Our results show that a machine learning approach can potentially identify a high number of different AFl mechanisms using the 12-lead ECG. More than the 8 atrial models used in this work should be included during training due to the significant influence that the atrial geometry has on the ECG signals and thus on the resulting classification. This non-invasive classification can help to identify the optimal ablation strategy, reducing time and resources required to conduct invasive cardiac mapping and ablation procedures.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
G. Luongo, S. Schuler, M.W. Rivolta, O. Dossel, R. Sassi, A. Loewe
Autori di Ateneo:
RIVOLTA MASSIMO WALTER ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/824343
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/824343/1735105/CinC2020-066.pdf
Titolo del libro:
Computing in Cardiology
Progetto:
MutlidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0