Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Machine-learning based determination of gait events from foot-mounted inertial units

Articolo
Data di Pubblicazione:
2021
Citazione:
Machine-learning based determination of gait events from foot-mounted inertial units / M. Zago, M. Tarabini, M.D. Spiga, C. Ferrario, F. Bertozzi, C. Sforza, M. Galli. - In: SENSORS. - ISSN 1424-8220. - 21:3(2021), pp. 839.1-839.13. [10.3390/s21030839]
Abstract:
A promising but still scarcely explored strategy for the estimation of gait parameters based on inertial sensors involves the adoption of machine learning techniques. However, existing approaches are reliable only for specific conditions, inertial measurements unit (IMU) placement on the body, protocols, or when combined with additional devices. In this paper, we tested an alternative gait-events estimation approach which is fully data-driven and does not rely on a priori models or assumptions. High-frequency (512 Hz) data from a commercial inertial unit were recorded during 500 steps performed by 40 healthy participants. Sensors’ readings were synchronized with a reference ground reaction force system to determine initial/terminal contacts. Then, we extracted a set of features from windowed data labeled according to the reference. Two gray-box approaches were evaluated: (1) classifiers (decision trees) returning the presence of a gait event in each time window and (2) a classifier discriminating between stance and swing phases. Both outputs were submitted to a deterministic algorithm correcting spurious clusters of predictions. The stance vs. swing approach estimated the stride time duration with an average error lower than 20 ms and confidence bounds between ±50 ms. These figures are suitable to detect clinically meaningful differences across different populations.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Decision trees; Gait analysis; Spatio-temporal parameters; Wearable sensors
Elenco autori:
M. Zago, M. Tarabini, M.D. Spiga, C. Ferrario, F. Bertozzi, C. Sforza, M. Galli
Autori di Ateneo:
SFORZA CHIARELLA ( autore )
ZAGO MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/810966
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/810966/1692141/0074_2021_Sensors_ImuGait.pdf
Progetto:
PIANO DI SOSTEGNO ALLA RICERCA 2015-2017 - LINEA 2 "DOTAZIONE ANNUALE PER ATTIVITA' ISTITUZIONALE"
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore BIO/16 - Anatomia Umana

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica

Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0