Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Design and Validation of a Minimal Complexity Algorithm for Stair Step Counting

Articolo
Data di Pubblicazione:
2020
Citazione:
Design and Validation of a Minimal Complexity Algorithm for Stair Step Counting / D. Coluzzi, M.W. Rivolta, A. Mastropietro, S. Porcelli, M.L. Mauri, M.T.L. Civiello, E. Denna, G. Rizzo, R. Sassi. - In: COMPUTERS. - ISSN 2073-431X. - 9:2(2020), pp. 31.1-31.15. [10.3390/computers9020031]
Abstract:
Wearable sensors play a significant role for monitoring the functional ability of the elderly and in general, promoting active ageing. One of the relevant variables to be tracked is the number of stair steps (single stair steps) performed daily, which is more challenging than counting flight of stairs and detecting stair climbing. In this study, we proposed a minimal complexity algorithm composed of a hierarchical classifier and a linear model to estimate the number of stair steps performed during everyday activities. The algorithm was calibrated on accelerometer and barometer recordings measured using a sensor platform worn at the wrist from 20 healthy subjects. It was then tested on 10 older people, specifically enrolled for the study. The algorithm was then compared with other three state-of-the-art methods, which used the accelerometer, the barometer or both. The experiments showed the good performance of our algorithm (stair step counting error: 13.8%), comparable with the best state-of-the-art (p > 0.05), but using a lower computational load and model complexity. Finally, the algorithm was successfully implemented in a low-power smartwatch prototype with a memory footprint of about 4 kB.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Active ageingHuman activity recognitionStair step countingWearable sensors
Elenco autori:
D. Coluzzi, M.W. Rivolta, A. Mastropietro, S. Porcelli, M.L. Mauri, M.T.L. Civiello, E. Denna, G. Rizzo, R. Sassi
Autori di Ateneo:
RIVOLTA MASSIMO WALTER ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/729934
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/729934/1458479/[54]_Computers_2020.pdf
Progetto:
Novel Empowering Solutions and Technologies for Older people to Retain Everyday life activities (NESTORE)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0