Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Refined Ventricular Activity Cancellation in Electrograms During Atrial Fibrillation by Combining Average Beat Subtraction and Interpolation

Contributo in Atti di convegno
Data di Pubblicazione:
2019
Citazione:
Refined Ventricular Activity Cancellation in Electrograms During Atrial Fibrillation by Combining Average Beat Subtraction and Interpolation / M.W. Rivolta, R. Sassi, M. Vila (PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY). - In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)[s.l] : IEEE, 2019. - ISBN 9781538613115. - pp. 24-27 (( Intervento presentato al 41. convegno Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) tenutosi a Berlin nel 2019 [10.1109/EMBC.2019.8857335].
Abstract:
Many techniques have been developed to cancel the ventricular interference in atrial electrograms (AEG) during atrial fibrillation. In particular, average beat subtraction (ABS) and interpolation are among those mostly adopted. However, ABS usually leaves high power residues and discontinuity at the borders, whereas interpolation totally substitutes the residual activity with a forecasting that might fail at the center of the cancellation segment. In this study, we proposed a new algorithm to refine the ventricular estimate provided by ABS, in such a way that the residual activity should likely be distributed as the local atrial activity. Briefly, the local atrial activity is first modeled with an autoregressive (AR) process, then the estimate is refined by maximizing the log likelihood of the atrial residual activity according to the fitted AR model. We tested the new algorithm on both synthetic and real AEGs, and compared the performance with other four algorithms (two variants of ABS, interpolation and zero substitution). On synthetic data, our algorithm outperformed all the others in terms of average root mean square error (0.043 vs 0.046 for interpolation; p < 0.05). On real data, our methodology outperformed two variants of ABS (p < 0.05) and performed similarly to interpolation when considering the high power residues left (both < 5%), and the log likelihood with the fitted AR model.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
M.W. Rivolta, R. Sassi, M. Vila
Autori di Ateneo:
RIVOLTA MASSIMO WALTER ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/681867
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/681867/2015804/EMBC_2019_VA_Cancellation.pdf
Titolo del libro:
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Progetto:
MutlidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0