Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Towards a new generation of parton densities with deep learning models

Articolo
Data di Pubblicazione:
2019
Citazione:
Towards a new generation of parton densities with deep learning models / S. Carrazza, C. Juan. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 79:8(2019 Aug 13). [10.1140/epjc/s10052-019-7197-2]
Abstract:
We present a new regression model for the determination of parton distribution functions (PDF) using techniques inspired from deep learning projects. In the context of the NNPDF methodology, we implement a new efficient computing framework based on graph generated models for PDF parametrization and gradient descent optimization. The best model configuration is derived from a robust cross-validation mechanism through a hyperparametrization tune procedure. We show that results provided by this new framework outperforms the current state-of-the-art PDF fitting methodology in terms of best model selection and computational resources usage.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
S. Carrazza, C. Juan
Autori di Ateneo:
CARRAZZA STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/674396
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/674396/1304195/Carrazza-Cruz-Martinez2019_Article_TowardsANewGenerationOfPartonD.pdf
Progetto:
Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.12.3.0