Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Non-ideal iris segmentation using Polar Spline RANSAC and illumination compensation

Articolo
Data di Pubblicazione:
2019
Citazione:
Non-ideal iris segmentation using Polar Spline RANSAC and illumination compensation / R. Donida Labati, E. Muñoz, V. Piuri, A. Ross, F. Scotti. - In: COMPUTER VISION AND IMAGE UNDERSTANDING. - ISSN 1077-3142. - 188(2019 Nov).
Abstract:
In this work, we propose a robust iris segmentation method for non-ideal ocular images, referred to as Polar Spline RANSAC, which robustly approximate the iris shape as a closed curve with arbitrary degrees of freedom. The method is robust to several nonidealities, such as poor contrast, occlusions, gaze deviations, pupil dilation, motion blur, poor focus, frame interlacing, differences in image resolution, specular reflections, and shadows. Differently from most methods in the literature, the proposed method obtains good performance in harsh conditions with different wavelengths and datasets. We also investigate the role of different illumination compensation techniques on the iris segmentation process. The experiments showed that the proposed method results in higher or comparable accuracy with respect to other competing techniques presented in the literature for images acquired in non-ideal conditions. Furthermore, the proposed segmentation method is general and can achieve competitive performance with heterogeneous state-of-the-art feature extraction and matching techniques. In particular, in conjunction with a well-known recognition schema, it achieved Equal Error Rate of 4.34% on DB WVU, Equal Error Rate of 5.98% on DB QFIRE, and pixel-wise classification error rate of 0.0165 on DB UBIRIS v2. Moreover, experiments using different illumination compensation techniques demonstrate that algorithms based on the Retinex model offer improved segmentation and recognition accuracy, thereby highlighting the importance of adopting illumination models for processing non-ideal ocular images.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
R. Donida Labati, E. Muñoz, V. Piuri, A. Ross, F. Scotti
Autori di Ateneo:
DONIDA LABATI RUGGERO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/667106
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/667106/1302856/CVIU2019_web.pdf
Progetto:
COntactlesS Multibiometric mObile System in the wild: COSMOS
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0