Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Jet grooming through reinforcement learning

Articolo
Data di Pubblicazione:
2019
Citazione:
Jet grooming through reinforcement learning / S. Carrazza, F.A. Dreyer. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:1(2019 Jul 15), pp. 014014.014014-1-014014.014014-10.
Abstract:
We introduce a novel implementation of a reinforcement learning (RL) algorithm which is designed to find an optimal jet grooming strategy, a critical tool for collider experiments. The RL agent is trained with a reward function constructed to optimize the resulting jet properties, using both signal and background samples in a simultaneous multilevel training. We show that the grooming algorithm derived from the deep RL agent can match state-of-the-art techniques used at the Large Hadron Collider, resulting in improved mass resolution for boosted objects. Given a suitable reward function, the agent learns how to train a policy which optimally removes soft wide-angle radiation, allowing for a modular grooming technique that can be applied in a wide range of contexts. These results are accessible through the corresponding GRoomRL framework.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
S. Carrazza, F.A. Dreyer
Autori di Ateneo:
CARRAZZA STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/659227
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/659227/1265291/PhysRevD.100.014014.pdf
Progetto:
Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0