Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Towards explainable face aging with Generative Adversarial Networks

Contributo in Atti di convegno
Data di Pubblicazione:
2019
Citazione:
Towards explainable face aging with Generative Adversarial Networks / A. Genovese, V. Piuri, F. Scotti (PROCEEDINGS - INTERNATIONAL CONFERENCE ON IMAGE PROCESSING). - In: 2019 IEEE International Conference on Image Processing (ICIP)[s.l] : IEEE, 2019. - ISBN 9781538662496. - pp. 3806-3810 (( Intervento presentato al 26. convegno International Conference on Image Processing tenutosi a Taipei nel 2019.
Abstract:
Generative Adversarial Networks (GAN) are being increasingly used to perform face aging due to their capabilities of automatically generating highly-realistic synthetic images by using an adversarial model often based on Convolutional Neural Networks (CNN). However, GANs currently represent black box models since it is not known how the CNNs store and process the information learned from data. In this paper, we propose the first method that deals with explaining GANs, by introducing a novel qualitative and quantitative analysis of the inner structure of the model. Similarly to analyzing the common genes in two DNA sequences, we analyze the common filters in two CNNs. We show that the GANs for face aging partially share their parameters with GANs trained for heterogeneous applications and that the aging transformation can be learned using general purpose image databases and a fine-tuning step. Results on public databases confirm the validity of our approach, also enabling future studies on similar models.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
GAN; Face aging; CNN; Deep Learning
Elenco autori:
A. Genovese, V. Piuri, F. Scotti
Autori di Ateneo:
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/641465
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/641465/1301590/icip19.pdf
Titolo del libro:
2019 IEEE International Conference on Image Processing (ICIP)
Progetto:
COntactlesS Multibiometric mObile System in the wild: COSMOS
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0