Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Robust single-sample face recognition by sparsity-driven sub-dictionary learning using deep features

Articolo
Data di Pubblicazione:
2019
Citazione:
Robust single-sample face recognition by sparsity-driven sub-dictionary learning using deep features / V. Cuculo, A. D'Amelio, G. Grossi, R. Lanzarotti, J. Lin. - In: SENSORS. - ISSN 1424-8220. - 19:1(2019 Jan 03), pp. 146.1-146.19. [10.3390/s19010146]
Abstract:
Face recognition using a single reference image per subject is challenging, above all when referring to a large gallery of subjects. Furthermore, the problem hardness seriously increases when the images are acquired in unconstrained conditions. In this paper we address the challenging Single Sample Per Person (SSPP) problem considering large datasets of images acquired in the wild, thus possibly featuring illumination, pose, face expression, partial occlusions, and low-resolution hurdles. The proposed technique alternates a sparse dictionary learning technique based on the method of optimal direction and the iterative ℓ 0 -norm minimization algorithm called k-LIMAPS. It works on robust deep-learned features, provided that the image variability is extended by standard augmentation techniques. Experiments show the effectiveness of our method against the hardness introduced above: first, we report extensive experiments on the unconstrained LFW dataset when referring to large galleries up to 1680 subjects; second, we present experiments on very low-resolution test images up to 8 × 8 pixels; third, tests on the AR dataset are analyzed against specific disguises such as partial occlusions, facial expressions, and illumination problems. In all the three scenarios our method outperforms the state-of-the-art approaches adopting similar configurations.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
face recognition; single sample per person; dictionary learning; optimal directions (MOD); Deep Convolutional Neural Network (DCNN) features; sparse recovery
Elenco autori:
V. Cuculo, A. D'Amelio, G. Grossi, R. Lanzarotti, J. Lin
Autori di Ateneo:
D'AMELIO ALESSANDRO ( autore )
GROSSI GIULIANO ( autore )
LANZAROTTI RAFFAELLA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/613254
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/613254/1179189/sensors-19-00146%20(1).pdf
Progetto:
Le espressioni facciali e l'interpretazione delle emozioni: un approccio computazionale di integrazione tra acquisizione di immagine e segnali fisiologici basato sulla shape analysis e network bayesiani
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0