Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Sobolev algebras on nonunimodular Lie groups

Articolo
Data di Pubblicazione:
2018
Citazione:
Sobolev algebras on nonunimodular Lie groups / M.M. Peloso, M. Vallarino. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 57:6(2018 Dec).
Abstract:
Let G be a noncompact connected Lie group and. be the right Haar measure of G. Let X = {X1,..., Xq} be a family of left invariant vector fields which satisfy Hormander's condition, and let Delta = -Sigma(q)(i=1) X-i(2) be the corresponding subLaplacian. For 1 = p < 8 and a = 0 we define the Sobolev space L-alpha(p) (G) = {f is an element of L-p (.) : a/2 f. L-p (.)}, endowed with the norm vertical bar vertical bar f vertical bar vertical bar a, p = vertical bar vertical bar f vertical bar vertical bar(p) + vertical bar vertical bar Delta(a/2) f vertical bar vertical bar(p), where we denote by f p the norm of f in L-p(.). In this paper we show that for all a = 0 and p. (1,8), the space L 8 n L-p a (G) is an algebra under pointwise product, that is, there exists a positive constant Ca, p such that for all f, g. L 8n L-p a (G), f g. L 8n L-p a (G) and vertical bar vertical bar fg vertical bar vertical bar a,p <= Ca,p (vertical bar vertical bar f vertical bar vertical bar a,p vertical bar vertical bar g vertical bar vertical bar(infinity) + vertical bar vertical bar f vertical bar vertical bar(infinity) vertical bar vertical bar g vertical bar vertical bar a, p). Such estimates were proved by Coulhon, Russ and Tardivel-Nachef in the case when G is unimodular. We shalL(p)rove it on Lie groups, thus extending their result to the nonunimodular case. In order to prove our main result, we need to study the boundedness of local Riesz transforms Rc J = XJ (cI + ) -m/2, where c > 0, XJ = X j1... X jm and j . {1,..., q} for = 1,..., m. We show that if c is sufficiently large, the Riesz transform Rc J is bounded on L-p(rho) for every p is an element of (1, infinity), and prove also appropriate endpoint results involving Hardy and BMO spaces.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M.M. Peloso, M. Vallarino
Autori di Ateneo:
PELOSO MARCO MARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/612698
Progetto:
Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0