Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Local Casimir Effect for a Scalar Field in Presence of a Point Impurity

Articolo
Data di Pubblicazione:
2018
Citazione:
Local Casimir Effect for a Scalar Field in Presence of a Point Impurity / D. Fermi, L. Pizzocchero. - In: SYMMETRY. - ISSN 2073-8994. - 10:2(2018 Feb).
Abstract:
The Casimir effect for a scalar field in presence of delta-type potentials has been investigated for a long time in the case of surface delta functions, modelling semi-transparent boundaries. More recently Albeverio, Cacciapuoti, Cognola, Spreafico and Zerbini have considered some configurations involving delta-type potentials concentrated at points of R^3; in particular, the case with an isolated point singularity at the origin can be formulated as a field theory on R^3 \ {0 } with self-adjoint boundary conditions at the origin for the Laplacian. However, the above authors have discussed only global aspects of the Casimir effect, focusing their attention on the vacuum expectation value (VEV) of the total energy. In the present paper we analyze the local Casimir effect with a point delta-type potential, computing the renormalized VEV of the stress-energy tensor at any point of R^3 \ {0 }; for this purpose we follow the zeta regularization approach, in the formulation already employed for different configurations in previous works of ours.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
local Casimir effect; renormalization; zeta regularization; delta-interactions
Elenco autori:
D. Fermi, L. Pizzocchero
Autori di Ateneo:
PIZZOCCHERO LIVIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/551363
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/551363/964766/symmetry-10-00038.pdf
Progetto:
Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


Settore MAT/03 - Geometria

Settore MAT/05 - Analisi Matematica

Settore MAT/07 - Fisica Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0