Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Linear-Sigmoidal modelling of accelerometer features and Tinetti score for automatic fall risk assessment

Contributo in Atti di convegno
Data di Pubblicazione:
2017
Citazione:
Linear-Sigmoidal modelling of accelerometer features and Tinetti score for automatic fall risk assessment / M.W. Rivolta, R. Sassi (PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY). - In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)[s.l] : IEEE Press, 2017 Jul. - ISBN 9781509028092. - pp. 3810-3813 (( Intervento presentato al 39. convegno Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) tenutosi a Seogwipo nel 2017.
Abstract:
Falling in elderly is a worldwide major problem and it can lead to severe injuries or death. Despite the effort made to ensure home environments safe and foster healthy lifestyles, it is still necessary to provide methodologies that can be used at home for detect risk factors associated with falls. In this study, we proposed a new simple non-linear model, i.e., Linear-Sigmoidal model (LS), easy to fit and simple to interpret, used to model accelerometer features and outcome of the clinical scale Tinetti (clinical scale for fall risk prediction). Also, subjects with a score ≤ 18 were considered as high risk of falling. One-hundred-twelve subjects underwent to a Tinetti test while wearing a 3D axis accelerometer at the chest, and the Tinetti score used as gold standard. Ninety subjects were used as training set and twenty-two ones were employed to test the model. The same sets were used to assess the performance of the standard linear regression (LR). Seven accelerometer features and the body mass index were used in the model regression. LS resulted better than LR in terms of model agreement (R(2): 0.76 vs 0.72) and classification accuracy (0.91 vs 0.86) on the test set.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Gait
Elenco autori:
M.W. Rivolta, R. Sassi
Autori di Ateneo:
RIVOLTA MASSIMO WALTER ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/527477
Titolo del libro:
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Progetto:
Sistema di Monitoraggio Ambientale con Rete di sensori e Telemonitoraggio indossabile a supporto di servizi di salute, prevenzione e sicurezza per l'Active Ageing
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0