Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Random Sampling and Machine Learning to Understand Good Decompositions

Articolo
Data di Pubblicazione:
2020
Citazione:
Random Sampling and Machine Learning to Understand Good Decompositions / S. Basso, A. Ceselli, A. Tettamanzi. - In: ANNALS OF OPERATIONS RESEARCH. - ISSN 1572-9338. - 284:2(2020 Jan), pp. 501-526.
Abstract:
Motivated by its implications in the development of general purpose solvers for decomposable Mixed Integer Programs (MIP), we address a fundamental research question, that is to assess if good decomposition patterns can be consistently found by looking only at static properties of MIP input instances, or not. We adopt a data driven approach, devising a random sampling algorithm, considering a set of generic MIP base instances, and generating a large, balanced and well diversified set of decomposition patterns, that we analyze with machine learning tools. The use of both supervised and unsupervised techniques highlights interesting structures of random decompositions, as well as suggesting (under certain conditions) a positive answer to the initial question, triggering at the same time perspectives for future research. Keywords: Dantzig-Wolfe Decomposition, Machine Learning, Random Sampling.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Dantzig-Wolfe Decomposition; Machine Learning; Random Sampling
Elenco autori:
S. Basso, A. Ceselli, A. Tettamanzi
Autori di Ateneo:
CESELLI ALBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/487931
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/487931/813837/main.pdf
Progetto:
Towards Research on decomposition Methods for Next Generation Analytics
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore MAT/09 - Ricerca Operativa
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0