Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

ESSENTIAL POSTREPLICATIVE FUNCTIONS OF THE SMC5/6 COMPLEX

Tesi di Dottorato
Data di Pubblicazione:
2015
Citazione:
ESSENTIAL POSTREPLICATIVE FUNCTIONS OF THE SMC5/6 COMPLEX / D. Menolfi ; supervisore interno: M. Foiani, D. Branzei ; supervisore esterno: P. Pasero, D. Branzei. UNIVERSITA' DEGLI STUDI DI MILANO, 2015 Mar 18. 26. ciclo, Anno Accademico 2014. [10.13130/d-menolfi_phd2015-03-18].
Abstract:
The structural maintenance of chromosomes (SMC) complex Smc5/6 is based on a heterodimer of two SMC subunits, Smc5 and Smc6, and six non-Smc element subunits, Nse1-6, all of which are essential for cell viability in most organisms. Smc5/6 safeguards genome integrity via different mechanisms, including stabilization of stalled replication forks, resolution of recombination intermediates, and maintenance of nucleolar integrity. However, the essential functions of Smc5/6 remain elusive. The aim of the present work was to understand when in the cell cycle the crucial functions of Smc5/6 are manifested and to identify them. Through the use of cell cycle regulated alleles, which enabled the restriction of various Smc5/6 subunits expression to either S or G2/M phases of the cell cycle, we uncovered that the essential roles are executed postreplicatively in G2/M. By further genetic screens, molecular approaches and genome-wide studies, we identified three chromosome topology and recombination-related processes that are crucially sensitive to low amounts of Smc5/6 specifically in G2/M. First, Smc5/6 plays a topological role affecting the formation and/or the resolution of Rad5-Mms2-Ubc13 chromatin structures that are later engaged by Sgs1-Top3-Rmi1. Second, Smc5/6 facilitates an epigenetic pathway that ensures silencing of specific loci, such as repetitive DNA regions, thereby preventing unrestrained recombination. Third, Smc5/6 has an anti-fragility function, facilitating replication through natural pausing elements and site-specific replication fork barriers and preventing their breakage in mitosis during chromosome segregation.
Tipologia IRIS:
Tesi di dottorato
Keywords:
SMC5/6; DNA Damage Tolerance; Post Replication Repair; cell cycle; chromosome dynamics; genome integrity
Elenco autori:
D. Menolfi
Link alla scheda completa:
https://air.unimi.it/handle/2434/264411
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/264411/367585/phd_unimi_R09393.pdf
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIO/11 - Biologia Molecolare
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.5.2.0