Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Driving enhanced exciton transfer by automatic differentiation

Articolo
Data di Pubblicazione:
2025
Citazione:
Driving enhanced exciton transfer by automatic differentiation / E. Ballarin, D.A. Chisholm, A. Smirne, M. Paternostro, F. Anselmi, S. Donadi. - In: MACHINE LEARNING: SCIENCE AND TECHNOLOGY. - ISSN 2632-2153. - 6:2(2025 Jun), pp. 025034.1-025034.10. [10.1088/2632-2153/add23b]
Abstract:
We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a two-level system acting as an antenna, a network through which the excitation propagates, and another two-level system at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
automatic differentiation; driving optimisation; exciton transfer; machine learning
Elenco autori:
E. Ballarin, D.A. Chisholm, A. Smirne, M. Paternostro, F. Anselmi, S. Donadi
Autori di Ateneo:
SMIRNE ANDREA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1207675
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1207675/3221066/Ballarin_2025_Mach._Learn.__Sci._Technol._6_025034.pdf
Progetto:
Quantum Reservoir Computing (QuReCo)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 26.1.3.0