Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the relevance of patch-based extraction methods for monocular depth estimation

Articolo
Data di Pubblicazione:
2025
Citazione:
On the relevance of patch-based extraction methods for monocular depth estimation / P. Coscia, A. Fusillo, A. Genovese, V. Piuri, F. Scotti. - In: IMAGE AND VISION COMPUTING. - ISSN 0262-8856. - (2025), pp. 105857.1-105857.34. [Epub ahead of print] [10.1016/j.imavis.2025.105857]
Abstract:
Scene geometry estimation from images plays a key role in robotics, augmented reality, and autonomous systems. In particular, Monocular Depth Estimation (MDE) focuses on predicting depth using a single RGB image, avoiding the need for expensive sensors. State-of-the-art approaches use deep learning models for MDE while processing images as a whole, sub-optimally exploiting their spatial information. A recent research direction focuses on smaller image patches, as depth information varies across different regions of an image. This approach reduces model complexity and improves performance by capturing finer spatial details. From this perspective, we propose a novel warp patch-based extraction method which corrects perspective camera distortions, and employ it in tailored training and inference pipelines. Our experimental results show that our patch-based approach outperforms its full-image-trained counterpart and the classical crop patch-based extraction. With our technique, we obtain a general performance enhancements over recent state-of-the-art models. Code will be available at https://github.com/AntonioFusillo/PatchMDE
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Monocular Depth Estimation (MDE); Autonomous Driving (AD); Patch-based approach; Single Image Depth Estimation (SIDE); Metric depth;
Elenco autori:
P. Coscia, A. Fusillo, A. Genovese, V. Piuri, F. Scotti
Autori di Ateneo:
COSCIA PASQUALE ( autore )
FUSILLO ANTONIO ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1202284
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1202284.2/3207003/imavis25b.pdf
https://air.unimi.it/retrieve/handle/2434/1202284.2/3207004/imavis25b_compressed.pdf
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore IINF-05/A - Sistemi di elaborazione delle informazioni

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0