Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Modular Deep Neural Networks with Residual Connections for Predicting the Pathogenicity of Genetic Variants in Non Coding Genomic Regions

Contributo in Atti di convegno
Data di Pubblicazione:
2026
Citazione:
Modular Deep Neural Networks with Residual Connections for Predicting the Pathogenicity of Genetic Variants in Non Coding Genomic Regions / F. Stacchietti, M. Nicolini, L. Chimirri, P.N. Robinson, E. Casiraghi, G. Valentini (LECTURE NOTES IN COMPUTER SCIENCE). - In: Advances in Computational Intelligence / [a cura di] Ignacio Rojas, Gonzalo Joya, Andreu Catala. - [s.l] : Springer, 2026. - ISBN 9783032027245. - pp. 398-410 (( Intervento presentato al 18. convegno IWANN International Work-Conference on Artificial Neural Networks Part I : June 16–18 tenutosi a Coruña (Spagna) nel 2025 [10.1007/978-3-032-02725-2_31].
Abstract:
Predicting pathogenic single nucleotide variants (SNVs) in non-coding regions of the human genome presents a significant challenge for the extreme class imbalance between pathogenic “positive” variants and physiological “negative” ones, since most machine learning methods are biased toward predicting negative examples. We designed two “block-shaped” tabular-DNN architectures: a Modular Block-Deep Neural Network (MoB-DNN) and a tabular Residual Network (T-ResNet), able to address the class imbalance problem through a mini-batch balancing strategy. We employed a hierarchical optimization approach to efficiently tune hyper-parameters related to training procedure, architecture, batch size, and mini-batch balancing ratio. Our experimental results demonstrate that T-ResNet outperforms and MoB-DNN shows competitive performance with a state-of-the-art hyper-ensemble method, suggesting that residual connections provide significant advantages for capturing complex patterns in non coding regions of the human genome.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Deep and modular neural models; Pathogenic variant prediction; Residual connections;
Elenco autori:
F. Stacchietti, M. Nicolini, L. Chimirri, P.N. Robinson, E. Casiraghi, G. Valentini
Autori di Ateneo:
CASIRAGHI ELENA ( autore )
NICOLINI MARCO ( autore )
STACCHIETTI FEDERICO ( autore )
VALENTINI GIORGIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1193956
Titolo del libro:
Advances in Computational Intelligence
Progetto:
National Center for Gene Therapy and Drugs based on RNA Technology (CN3 RNA)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0