Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Distributed Anomaly Detection with Attention-guided Diffusion Models and Client-side Defect Generation

Articolo
Data di Pubblicazione:
2025
Citazione:
Distributed Anomaly Detection with Attention-guided Diffusion Models and Client-side Defect Generation / P. Coscia, A. Genovese, V. Piuri, K.N. Plataniotis, F. Scotti. - In: IEEE SYSTEMS JOURNAL. - ISSN 1937-9234. - (2025), pp. 1-12. [Epub ahead of print] [10.1109/JSYST.2025.3619401]
Abstract:
Modern industrial systems are increasingly defined by geographically distributed production lines, stringent privacy constraints, particularly to protect intellectual property and manufacturing process details, and heterogeneous data pipelines. In such environments, centralized Anomaly Detection (AD) is often impractical due to data governance restrictions and limited computational resources at local sites. To address these challenges, we propose a modular and lightweight AD framework based on diffusion models, named D-ADDA (Distributed Anomaly Detection based on Data Augmentation), designed for distributed deployment. Unlike many state-of-the-art methods that depend on large pre-trained models or external datasets, our approach is trained entirely on defective data locally available, enhancing privacy and domain specificity. A novel Data Augmentation Module (DAM) generates diverse defective samples through a multi-stage pipeline, which are used to train an attention-based diffusion model for defect synthesis. This architecture supports dislocated components across multiple clients, enabling training and inference in resource-constrained or privacy-sensitive settings. Experimental results on the MVTec AD dataset confirm the effectiveness of our approach, achieving an average classification accuracy of 60.46% across 14 categories, outperforming state-of-the-art approaches, with competitive localization performance.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Distributed anomaly detection; diffusion process; data augmentation; attention mechanism; defect synthesis;
Elenco autori:
P. Coscia, A. Genovese, V. Piuri, K.N. Plataniotis, F. Scotti
Autori di Ateneo:
COSCIA PASQUALE ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1192818
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1192818/3173686/IEEE_Systems_Journal_2025.pdf
https://air.unimi.it/retrieve/handle/2434/1192818/3193255/Distributed_Anomaly_Detection_With_Attention-Guided_Diffusion_Models_and_Client-Side_Defect_Generation(3)_compressed.pdf
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0