Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

OneN: Guided attention for natively-explainable anomaly detection

Articolo
Data di Pubblicazione:
2025
Citazione:
OneN: Guided attention for natively-explainable anomaly detection / P. Coscia, A. Genovese, V. Piuri, F. Scotti. - In: IMAGE AND VISION COMPUTING. - ISSN 0262-8856. - 163:(2025 Nov), pp. 105741.1-105741.18. [10.1016/j.imavis.2025.105741]
Abstract:
In industrial computer vision applications, anomaly detection (AD) is a critical task for ensuring product quality and system reliability. However, many existing AD systems follow a modular design that decouples classification from detection and localization tasks. Although this separation simplifies model development, it often limits generalizability and reduces practical effectiveness in real-world scenarios. Deep neural networks offer strong potential for unified solutions. Nonetheless, most current approaches still treat detection, localization and classification as separate components, hindering the development of more integrated and efficient AD pipelines. To bridge this gap, we propose OneN (One Network), a unified architecture that performs detection, localization, and classification within a single framework. Our approach distills knowledge from a high-capacity convolutional neural network (CNN) into an attention-based architecture trained under varying levels of supervision. The resulting attention maps act as interpretable pseudo-segmentation masks, enabling accurate localization of anomalous regions. To further enhance localization quality, we introduce a progressive focal loss that guides attention maps at each layer to focus on critical features. We validate our method through extensive experiments on both standardized and custom-defined industrial benchmarks. Even under weak supervision, it improves performance, reduces annotation effort, and facilitates scalable deployment in industrial environments.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
anomaly detection; attention mechanism; knowledge distillation; generative model; vision transformer
Elenco autori:
P. Coscia, A. Genovese, V. Piuri, F. Scotti
Autori di Ateneo:
COSCIA PASQUALE ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1185775
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1185775/3160576/1-s2.0-S0262885625003294-main.pdf
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore IINF-05/A - Sistemi di elaborazione delle informazioni

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0