Data di Pubblicazione:
2025
Citazione:
Improved Regret Bounds for Bandits with Expert Advice / N. Cesa Bianchi, K. Eldowa, E. Esposito, J. Olkhovskaya. - In: JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH. - ISSN 1943-5037. - 83:(2025 Jul), pp. 6.1-6.14. [10.1613/jair.1.16738]
Abstract:
In this research note, we revisit the bandits with expert advice problem. Under a restricted feedback model, we prove a lower bound of order (Formula presented) for the worst-case regret, where K is the number of actions, N > K the number of experts, and T the time horizon. This matches a previously known upper bound of the same order and improves upon the best available lower bound of (Formula presented). For the standard feedback model, we prove a new instance-based upper bound that depends on the agreement between the experts and provides a logarithmic improvement compared to prior results.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
N. Cesa Bianchi, K. Eldowa, E. Esposito, J. Olkhovskaya
Link alla scheda completa:
Link al Full Text: