Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

CypEGAT: A Deep Learning Framework Integrating Protein Language Model and Graph Attention Networks for Enhanced CYP450s Substrate Prediction

Capitolo di libro
Data di Pubblicazione:
2025
Citazione:
CypEGAT: A Deep Learning Framework Integrating Protein Language Model and Graph Attention Networks for Enhanced CYP450s Substrate Prediction / Y. Wei, U. Guerrini, I. Eberini (COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE). - In: AI for Research and Scalable, Efficient Systems / [a cura di] Q. Wang, W. Yin, A. Aich, Y. Suh, K.-C. Peng. - [s.l] : Springer Singapore, 2025 Jun 30. - ISBN 978-981-96-8911-8. - pp. 161-172 (( convegno Second International Workshop, AI4Research 2025, and First International Workshop, SEAS 2025 tenutosi a Philadelphia nel 2025 [10.1007/978-981-96-8912-5_7].
Abstract:
Human Cytochrome P450 enzymes (CYP450s) are respon- sible for metabolizing 70–80% of clinically used drugs. The develop- ment of computational tools to accurately predict CYP450 enzyme- substrate interactions is crucial for drug discovery and chemical tox- icology studies. In this work, we introduce CypEGAT, a deep learn- ing framework designed to enhance prediction performance by integrat- ing protein embeddings of CYP450s (extracted using the pre-trained ESM-2 Transformer model) with molecular embeddings generated by our fine-tuned Graph Attention Network (GAT). The CypEGAT model was trained end-to-end on two large-scale experimental enzyme-substrate datasets and our CYP450s dataset, which comprises 51,753 CYP450 enzyme-substrate pairs and 27,857 enzyme-nonsubstrate pairs. Focusing on five major human CYP450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4), CypEGAT achieves an overall predictive accu- racy of 0.882 and an AUROC of 0.928. The model demonstrates robust generalizability to novel chemical compounds across different CYP450 isoforms, underscoring its potential as a powerful tool for drug metabolism studies.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Enzyme-substrate prediction; Deep learning; Drug discovery
Elenco autori:
Y. Wei, U. Guerrini, I. Eberini
Autori di Ateneo:
EBERINI IVANO ( autore )
WEI YAO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1175175
Titolo del libro:
AI for Research and Scalable, Efficient Systems
Progetto:
Metal-containing Radical Enzymes (MetRaZymes)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIOS-07/A - Biochimica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0