Data di Pubblicazione:
2025
Citazione:
A quantitative study of radial symmetry for solutions to semilinear equations in Rn / G. Ciraolo, M. Cozzi, M. Gatti. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 204:(2025 Dec), pp. 103755.1-103755.45. [10.1016/j.matpur.2025.103755]
Abstract:
A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations Δu+f(u)=0 in Rn must be radial and radially decreasing. In this paper, we consider both energy solutions in D1,2(Rn) and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart. To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Moving planes method; Quantitative estimates; Semilinear elliptic equations; Stability;
Elenco autori:
G. Ciraolo, M. Cozzi, M. Gatti
Link alla scheda completa:
Link al Full Text: