Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids

Articolo
Data di Pubblicazione:
2025
Citazione:
Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids / R. Bianchini, L. Franzoi, R. Montalto, S. Terracina. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 406:3(2025), pp. 66.1-66.67. [10.1007/s00220-025-05247-z]
Abstract:
We establish the existence of quasi-periodic traveling wave solutions for the beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-plane equation on T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>2$$\end{document} with a large quasi-periodic traveling wave external force. These solutions exhibit large sizes, which depend on the frequency of oscillations of the external force. Due to the presence of small divisors, the proof relies on a nonlinear Nash-Moser scheme tailored to construct nonlinear waves of large size. To our knowledge, this is the first instance of constructing quasi-periodic solutions for a quasilinear PDE in dimensions greater than one, with a 1-smoothing dispersion relation that is highly degenerate - indicating an infinite-dimensional kernel for the linear principal operator. This degeneracy challenge is overcome by preserving the traveling-wave structure, the conservation of momentum and by implementing normal form methods for the linearized system with sublinear dispersion relation in higher space dimension.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
R. Bianchini, L. Franzoi, R. Montalto, S. Terracina
Autori di Ateneo:
FRANZOI LUCA ( autore )
MONTALTO RICCARDO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1165607
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1165607/3073172/s00220-025-05247-z.pdf
Progetto:
Hamiltonian Dynamics, Normal forms and Water Waves (HamDyWWa)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MATH-03/A - Analisi matematica

Settore MATH-04/A - Fisica matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0