Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Neural Network Models for Prostate Zones Segmentation in Magnetic Resonance Imaging

Articolo
Data di Pubblicazione:
2025
Citazione:
Neural Network Models for Prostate Zones Segmentation in Magnetic Resonance Imaging / S. Fouladi, L. Di Palma, F. Darvizeh, D. Fazzini, A. Maiocchi, S. Papa, G. Gianini, M. Alì. - In: INFORMATION. - ISSN 2078-2489. - 16:3(2025 Feb 28), pp. 186.1-186.26. [10.3390/info16030186]
Abstract:
Prostate cancer (PCa) is one of the most common tumors diagnosed in men worldwide, with approximately 1.7 million new cases expected by 2030. Most cancerous lesions in PCa are located in the peripheral zone (PZ); therefore, accurate identification of the location of the lesion is essential for effective diagnosis and treatment. Zonal segmentation in magnetic resonance imaging (MRI) scans is critical and plays a key role in pinpointing cancerous regions and treatment strategies. In this work, we report on the development of three advanced neural network-based models: one based on ensemble learning, one on Meta-Net, and one on YOLO-V8. They were tailored for the segmentation of the central gland (CG) and PZ using a small dataset of 90 MRI scans for training, 25 MRIs for validation, and 24 scans for testing. The ensemble learning method, combining U-Net-based models (Attention-Res-U-Net, Vanilla-Net, and V-Net), achieved an IoU of 79.3% and DSC of 88.4% for CG and an IoU of 54.5% and DSC of 70.5% for PZ on the test set. Meta-Net, used for the first time in segmentation, demonstrated an IoU of 78% and DSC of 88% for CG, while YOLO-V8 outperformed both models with an IoU of 80% and DSC of 89% for CG and an IoU of 58% and DSC of 73% for PZ
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
prostate zonal segmentation; ensemble learning; Meta-Net; YOLO-V8; U-Net neural network; magnetic resonance imaging (MRI)
Elenco autori:
S. Fouladi, L. Di Palma, F. Darvizeh, D. Fazzini, A. Maiocchi, S. Papa, G. Gianini, M. Alì
Autori di Ateneo:
FOULADI SAMAN ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1161895
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1161895/2983141/information-16-00186.pdf
Progetto:
MUSA - Multilayered Urban Sustainability Actiona
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0