Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Protecting machine learning from poisoning attacks: A risk-based approach

Articolo
Data di Pubblicazione:
2025
Citazione:
Protecting machine learning from poisoning attacks: A risk-based approach / N. Bena, M. Anisetti, E. Damiani, C.Y. Yeun, C.A. Ardagna. - In: COMPUTERS & SECURITY. - ISSN 0167-4048. - 155:(2025 Aug), pp. 104468.1-104468.13. [10.1016/j.cose.2025.104468]
Abstract:
The ever-increasing interest in and widespread diffusion of Machine Learning (ML)-based applications has driven a substantial amount of research into offensive and defensive ML. ML models can be attacked from different angles: poisoning attacks, the focus of this paper, inject maliciously crafted data points in the training set to modify the model behavior; adversarial attacks maliciously manipulate inference-time data points to fool the ML model and drive the prediction of the ML model according to the attacker’s objective. Ensemble-based techniques are among the most relevant defenses against poisoning attacks and replace the monolithic ML model with an ensemble of ML models trained on different (disjoint) subsets of the training set. They assign data points to the training sets of the models in the ensemble (routing) randomly or using a hash function, assuming that evenly distributing poisoned data points positively influences ML robustness. Our paper departs from this assumption and implements a risk-based ensemble technique where a risk management process is used to perform a smart routing of data points to the training sets. An extensive experimental evaluation demonstrates the effectiveness of the proposed approach in terms of its soundness, robustness, and performance.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Ensemble; Machine learning; Poisoning; Risk; Robustness
Elenco autori:
N. Bena, M. Anisetti, E. Damiani, C.Y. Yeun, C.A. Ardagna
Autori di Ateneo:
ANISETTI MARCO ( autore )
ARDAGNA CLAUDIO AGOSTINO ( autore )
BENA NICOLA ( autore )
DAMIANI ERNESTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1160875
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1160875/2916220/BADYA.COSE2025.pdf
Progetto:
MUSA - Multilayered Urban Sustainability Actiona
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0