Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Extending atomic decomposition and many-body representation with a chemistry-motivated approach to machine learning potentials

Articolo
Data di Pubblicazione:
2025
Citazione:
Extending atomic decomposition and many-body representation with a chemistry-motivated approach to machine learning potentials / Q. Yu, R. Ma, C. Qu, R. Conte, A. Nandi, P. Pandey, P.L. Houston, D.H. Zhang, J.M. Bowman. - In: NATURE COMPUTATIONAL SCIENCE. - ISSN 2662-8457. - (2025), pp. 3887.1-3887.12. [Epub ahead of print] [10.1038/s43588-025-00790-0]
Abstract:
Most widely used machine learning potentials for condensed-phase applications rely on many-body permutationally invariant polynomial or atom-centered neural networks. However, these approaches face challenges in achieving chemical interpretability in atomistic energy decomposition and fully matching the computational efficiency of traditional force fields. Here we present a method that combines aspects of both approaches and balances accuracy and force-field-level speed. This method utilizes a monomer-centered representation, where the potential energy is decomposed into the sum of chemically meaningful monomeric energies. The structural descriptors of monomers are described by one-body and two-body effective interactions, enforced by appropriate sets of permutationally invariant polynomials as inputs to the feed-forward neural networks. Systematic assessments of models for gas-phase water trimer, liquid water, methane–water cluster and liquid carbon dioxide are performed. The improved accuracy, efficiency and flexibility of this method have promise for constructing accurate machine learning potentials and enabling large-scale quantum and classical simulations for complex molecular systems.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
Q. Yu, R. Ma, C. Qu, R. Conte, A. Nandi, P. Pandey, P.L. Houston, D.H. Zhang, J.M. Bowman
Autori di Ateneo:
CONTE RICCARDO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1160842
Progetto:
Piano di Sostegno alla Ricerca 2015-2017 - Linea 2 "Dotazione annuale per attività istituzionali" (anno 2022)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore CHEM-02/A - Chimica fisica

Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0