Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Augmented designs to choose between constant absolute and relative errors and to estimate model parameters

Articolo
Data di Pubblicazione:
2025
Citazione:
Augmented designs to choose between constant absolute and relative errors and to estimate model parameters / C. de la Calle-Arroyo, S. Leorato, L.J. Rodríguez-Aragón, C. Tommasi. - In: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. - ISSN 0169-7439. - 261:(2025 Jun), pp. 105362.1-105362.10. [10.1016/j.chemolab.2025.105362]
Abstract:
In experimental sciences such as chemistry, the measurement error may be homoscedastic or heteroscedastic. The data should be collected with the goal of identifying the right error-variance structure, as an incorrectly specified model would lead to wrong conclusions. A design criterion that reflects this goal is KL-optimality. Frequently, however, KL-optimum designs are wholly inefficient for other inferential purposes, such as precise estimation. In this case, the addition of some experimental points might be convenient. This work focuses on the enrichment of a design through the inclusion of some additional support points, with the goal of guaranteeing a minimum KL-efficiency to be able to optimally choose between different variance specifications. This strategy is also useful for modifying a design that is already available, for instance a D-optimal design, to manage the problem of correct error-variance specification.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Augmented designs; Error-variance specification; KL-optimality; Multi-objective criteria; Optimal experimental designs
Elenco autori:
C. de la Calle-Arroyo, S. Leorato, L.J. Rodríguez-Aragón, C. Tommasi
Autori di Ateneo:
LEORATO SAMANTHA ( autore )
TOMMASI CHIARA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1161883
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1161883/2983028/Chemometrics2025.pdf
Progetto:
Optimal and adaptive designs for modern medical experimentation
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore STAT-01/A - Statistica

Settore STAT-01/B - Statistica per la ricerca sperimentale e tecnologica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.6.1.0