Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Comparing self-supervised learning techniques for wearable human activity recognition

Articolo
Data di Pubblicazione:
2025
Citazione:
Comparing self-supervised learning techniques for wearable human activity recognition / S. Ek, R. Presotto, G. Civitarese, F. Portet, P. Lalanda, C. Bettini. - In: CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION. - ISSN 2524-521X. - (2025), pp. 1-18. [Epub ahead of print] [10.1007/s42486-024-00182-9]
Abstract:
Human Activity Recognition (HAR) based on the sensors of mobile/wearable devices aims to detect the physical activities performed by humans in their daily lives. Although supervised learning methods are the most effective in this task, their effectiveness is constrained to using a large amount of labeled data during training. While collecting raw unlabeled data can be relatively easy, annotating data is challenging due to costs, intrusiveness, and time constraints. To address these challenges, this paper explores alternative approaches for accurate HAR using a limited amount of labeled data. In particular, we have adapted recent Self-Supervised Learning (SSL) algorithms to the HAR domain and compared their effectiveness. We investigate three state-of-the-art SSL techniques of different families: contrastive, generative, and predictive. Additionally, we evaluate the impact of the underlying neural network on the recognition rate by comparing state-of-the-art CNN and transformer architectures. Our results show that a Masked Auto Encoder approach significantly outperforms other SSL approaches, including SimCLR, commonly considered one of the best-performing SSL methods in the HAR domain. The code and the pre-trained SSL models are publicly available for further research and development.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
S. Ek, R. Presotto, G. Civitarese, F. Portet, P. Lalanda, C. Bettini
Autori di Ateneo:
BETTINI CLAUDIO ( autore )
CIVITARESE GABRIELE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1157218
Progetto:
SEcurity and RIghts in the CyberSpace (SERICS)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0