Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Bias Amplification Chains in ML-based Systems with an Application to Credit Scoring

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Bias Amplification Chains in ML-based Systems with an Application to Credit Scoring / A.G. Buda, G. Coraglia, F.A. Genco, C. Manganini, G. Primiero (CEUR WORKSHOP PROCEEDINGS). - In: BEWARE 2024 : Bias, Risk, Explainability, Ethical AI and the role of Logic and Logic Programming 2024 / [a cura di] G. Coraglia, F. A. D'Asaro, A. Dyoub, F. A. Lisi, G. Primiero. - [s.l] : CEUR-WS, 2024 Dec 22. - pp. 1-9 (( Intervento presentato al 3. convegno BEWARE 2024 : Bias, Risk, Explainability, Ethical AI and the role of Logic and Logic Programming 2024 tenutosi a Bolzano nel 2024.
Abstract:
Machine Learning (ML) systems, whether predictive or generative, not only reproduce biases and stereotypes but, even more worryingly, amplify them. Strategies for bias detection and mitigation typically focus on either ex post or ex ante approaches, but are always limited to two steps analyses. In this paper, we introduce the notion of Bias Amplification Chain (BAC) as a series of steps in which bias may be amplified during the design, development and deployment phases of trained models. We provide an application to such notion in the credit scoring setting and a quantitative analysis through the BRIO tool.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
ML Fairness; Bias Amplification; Responsible AI
Elenco autori:
A.G. Buda, G. Coraglia, F.A. Genco, C. Manganini, G. Primiero
Autori di Ateneo:
MANGANINI CHIARA ( autore )
PRIMIERO GIUSEPPE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1127941
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1127941/2617108/paper9.pdf
Titolo del libro:
BEWARE 2024 : Bias, Risk, Explainability, Ethical AI and the role of Logic and Logic Programming 2024
Progetto:
BIAS, RISK, OPACITY in AI: design, verification and development of Trustworthy AI
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INFO-01/A - Informatica

Settore PHIL-02/A - Logica e filosofia della scienza
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0