Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Using Graph Neural Networks for Heterogeneous Event Classification

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Using Graph Neural Networks for Heterogeneous Event Classification / V. Bellandi, S. Montanelli, D. Shlyk, S. Siccardi (CEUR WORKSHOP PROCEEDINGS). - In: CEUR Workshop Proceedings / [a cura di] M. Atzori, P. Ciaccia, M. Ceci, F. Mandreoli, D. Malerba, M. Sanguinetti, A. Pellicani, F. Motta. - [s.l] : CEUR, 2024. - pp. 247-259 (( Intervento presentato al 32. convegno SEBD Italian Symposium on Advanced Database Systems : June 23rd to 26th tenutosi a Villasimius nel 2024.
Abstract:
Graph Neural Networks (GNNs) are specialized machine learning models designed for analyzing and making predictions based on graph-structured data. In this paper, we introduce a GNN-based approach for the analysis of heterogeneous event graphs. By heterogeneous event graph, we refer to a temporal graph where multiple types of nodes representing events as well as multiple type of edges among events are defined. A distinguishing aspect of the proposed approach lies in the specification of the subgraph of nodes for each event to classify, and in the use of embedding techniques for representing all the relevant features/attributes of the subgraph. The proposed approach is compatible with different GNN models; the use of PSCN, namely a CNN for subgraph classification, is discussed in the paper under two different settings. Preliminary results on two different case-studies, as well as a real application in the field of historical data classification are also discussed.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
GNN; Historical Data Analysis; Multi-layer Event Classification;
Elenco autori:
V. Bellandi, S. Montanelli, D. Shlyk, S. Siccardi
Autori di Ateneo:
BELLANDI VALERIO ( autore )
MONTANELLI STEFANO ( autore )
SHLYK DARYA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1122501
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1122501/2603891/paper36.pdf
Titolo del libro:
CEUR Workshop Proceedings
Progetto:
MUSA - Multilayered Urban Sustainability Actiona
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0