Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Tasks Scheduling with Load Balancing in Fog Computing: a Bi-level Multi-Objective Optimization Approach

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Tasks Scheduling with Load Balancing in Fog Computing: a Bi-level Multi-Objective Optimization Approach / N. Kouka, V. Piuri, P. Samarati - In: GECCO '24: Proceedings / [a cura di] X. Li, J. Handl. - [s.l] : ACM, 2024 Jul 14. - ISBN 979-8-4007-0494-9. - pp. 538-546 (( convegno Genetic and Evolutionary Computation Conference tenutosi a New York nel 2024 [10.1145/3638529.3654069].
Abstract:
Fog computing is characterized by its proximity to edge devices, allowing it to handle data near the source. This capability alleviates the computational burden on data centers and minimizes latency. Ensuring high throughput and reliability of services in Fog environments depends on the critical roles of load balancing of resources and task scheduling. A significant challenge in task scheduling is allocating tasks to optimal nodes. In this paper, we tackle the challenge posed by the dependency between optimally scheduled tasks and the optimal nodes for task scheduling and propose a novel bi-level multi-objective task scheduling approach. At the upper level, which pertains to task scheduling optimization, the objective functions include the minimization of makespan, cost, and energy. At the lower level, corresponding to load balancing optimization, the objective functions include the minimization of response time and maximization of resource utilization. Our approach is based on an Improved Multi-Objective Ant Colony algorithm (IMOACO). Simulation experiments using iFogSim confirm the performance of our approach and its advantage over existing algorithms, including heuristic and meta-heuristic approaches.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
colony optimization; fog computing; load-balancing; multi-objective optimization problem; task scheduling
Elenco autori:
N. Kouka, V. Piuri, P. Samarati
Autori di Ateneo:
KOUKA NAJOUA ( autore )
PIURI VINCENZO ( autore )
SAMARATI PIERANGELA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1121818
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1121818/2600006/3638529.3654069.pdf
Titolo del libro:
GECCO '24: Proceedings
Progetto:
Green responsibLe privACy preservIng dAta operaTIONs
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0